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ABSTRACT 
A method of using fuzzy logic to interpret current sensors signal of induction motor for its stator condition monitoring 

was presented. Correctly processing theses current signals and inputting them to a fuzzy decision system achieved 

high diagnosis accuracy. There is most likely still room for improvement by using an intelligent means of optimization. 

Fault Detection Scheme using Neuro-Fuzzy Approach ANFIS had gained popularity over other techniques due to its 

knowledge extraction feasibility, domain partitioning, rule structuring and modifications. The artificial neural network 

(ANN) has the capability of solving the motor monitoring and fault detection problem using an inexpensive, reliable 

procedure. However, it does not provide heuristic reasoning about the fault detection process. On the other hand, fuzzy 

logic can easily provide heuristic reasoning, while being difficult to provide exact solutions. By merging the positive 

features of ANN and fuzzy logic, a simple noninvasive fault detection technique is developed. By using a hybrid, 

supervised learning algorithm, ANFIS can construct an input-output mapping. The supervised learning (gradient 

descent) algorithm is used here to train the weights to minimize the errors. 

. 

KEYWORDS: Fault diagnosis, soft computing 

 

     INTRODUCTION 
A fuzzy logic approach may help to diagnose induction motor faults. Fuzzy logic is reminiscent of human thinking 

process and natural language enabling decisions to be made based on vague information.  

 

The induction motor condition is diagnosed using a compositional rule of fuzzy inference as shown in Fig.1. The 

obtained results indicate that the proposed fuzzy logic approach is capable of highly accurate diagnosis. The stator 

current signal contains the information about faults in the motor. Fuzzy systems rely on a set of rules. These rules, 

allow the input to be fuzzy, i.e. like an electrical machine referred as "somewhat secure", "little overloaded". This 

linguistic input can be expressed directly by a fuzzy system. 

𝐼𝑎 = {𝜇(𝑓𝑎(𝐼𝑎𝑗)𝜖)𝐼𝑎} 

𝐼𝑏 = {𝜇(𝑓𝑏(𝐼𝑏𝑗)𝜖)𝐼𝑏} 

𝐼𝑐 = {𝜇(𝑓𝑐(𝐼𝑐𝑗)𝜖)𝐼𝑐} 

𝐶𝑀 = {𝜇𝑐𝑚(𝑐𝑚𝑗) 𝜖 𝐶𝑀} 
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Fig.1 Block Diagram of Induction Motor Condition Monitoring System 

FUZZY INFERENCE SYSTEM 
Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The 

mapping then provides a basis from which decisions can be made, or patterns discerned. The process of fuzzy inference 

involves membership functions, fuzzy logic operators, and if-then rules. There are two types of fuzzy inference 

systems that can be implemented in the Fuzzy Logic Toolbox. They are Mamdani-type and Sugeno-type. In this setup 

Mamdani-type fuzzy inference system is used. The fuzzy inference system is shown in Fig.2. 

 

MEMBERSHIP FUNCTIONS 
A membership function (MF) is a curve that defines how each point in the input space is mapped to a membership 

value (or degree of membership) between 0 and 1.The input space is sometimes referred to as the universe of discourse. 

There are two types of membership functions. They are input membership function and output membership function. 

 

Input Membership Function 

The input membership function consists of three input variables. They are Ia, Ib and Ic nothing but the stator current 

signals. Here trapezoidal and triangular membership function is used. The input variables are interpreted as linguistic 

variables, with Zero (Z), Small(S), Medium (M) and Big (B). The input membership function is shown in Fig.3. The 

range of input membership function varies from 0 to 3. 
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Fig.2 Internal Structure of Fuzzy Logic Controller 

 

 
 

 

 

 

 

 

Output Membership Function 

The Output membership consists of one variable. The variable is the condition of the motor. The output variables are 

interpreted as linguistic variable with Good, Damaged and Seriously Damaged. Here also trapezoidal membership 

function is used. The output membership function is shown in Fig. 4. The range of output membership function varies 

from 0 to 100. 

 

DEFUZZIFICATION AND FUZZY RULES 
Defuzzification is defined as the conversion of fuzzy output to crisp output. There are many types of defuzzification 

methods available. Here we used Center of Area (COA) method for defuzzification. Despite its complexity it is more 

Fig.4 Fuzzy membership functions for the stator 

condition (G: Good, D: Damaged and SD: Seriously 

Damaged) 

 

Fig.3 Fuzzy Membership functions for stator 

currents (Z: Zero, S: Small, M: Medium and B: 

Big) 
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popularly used because, if the areas of two or more contributing rules overlap, the overlapping area is counted only 

once. 

Rule (1): If Ia is Z Then CM is SD 

Rule (2): If Ib is Z Then CM is SD 

Rule (3): If Ic is Z Then CM is SD 

Rule (4): If Ia is B Then CM is SD 

Rule (5): If Ib is B Then CM is SD 

Rule (6): If Ic is B Then CM is SD 

Rule (7): If Ia is S and Ib is S and Ic is M Then CM is D 

Rule (8): If Ia is S and Ib is M and Ic is M Then CM is D 

Rule (9): If Ia is M and Ib is S and Ic is M Then CM is D 

Rule (10): If Ia is M and Ib is M and Ic is M Then CM is G 

Rule (11): If Ia is S and Ib is S and Ic is S Then CM is G 

Rule (12): If Ia is S and Ib is M and Ic is S Then CM is D 

Rule (13): If Ia is M and Ib is S and Ic is S Then CM is D 

Rule (14): If Ia is M and Ib is M and Ic is S Then CM is D. 

 

MODELING AND SIMULATION OF INDUCTION MOTOR FAULT DETECTION  
Modeling here refers to the process of analysis and synthesis to arrive at a suitable mathematical description that 

encompasses the relevant dynamic characteristics of the component, preferably in terms of parameters that can be 

easily determined in practice. In mathematical modeling, we try to establish functional relationships between entities 

that are important. A model supposedly imitates or reproduces certain essential characteristics or conditions of the 

actual – often on a different scale. Here the three-phase induction motor model has been derived instead of two phase 

model (d-q representation), which is very commonly used. So, in order to gain an understanding of problems that does 

not comply directly with balanced operating conditions and for which d-q methods of analysis are inappropriate, three-

phase representation becomes essential. 

 

Induction Motor Performance Parameter Analysis for Stator Fault 

When induction machines are expressed in three-phase axes, many of the inductances are function of the rotor 

displacement and therefore functions of rotor speed and time as shown in the following Stator Inductances: It is 

assumed that the air gap of the induction machine is uniform and the stator and rotor windings are sinusoidally 

distributed, all the stator self-inductances are identical. 

𝐿𝐴𝐴 = 𝐿𝐵𝐵 = 𝐿𝐶𝐶 = 𝐿𝑖𝑠 + 𝐿𝑚𝑠 
The mutual inductance between any two stator windings is the same due to symmetry 

𝐿𝐴𝐵 = 𝐿𝐵𝐴 = −0.5𝐿𝑚𝑠  
𝐿𝐵𝐶 = 𝐿𝐶𝐵 = −0.5𝐿𝑚𝑠  
𝐿𝐶𝐴 = 𝐿𝐴𝐶 = −0.5𝐿𝑚𝑠  

Rotor Inductances: In the same manner to that given for the stator, the rotor self-inductances and mutual inductances 

are: 

𝐿𝑎𝑎 = 𝐿𝑏𝑏 = 𝐿𝑐𝑐 = 𝐿𝑙𝑟 + 𝐿𝑚𝑟 

𝐿𝑎𝑏 = 𝐿𝑏𝑎 = −0.5𝐿𝑚𝑟   
𝐿𝑏𝑐 = 𝐿𝑐𝑏 = −0.5𝐿𝑚𝑟 

𝐿𝑐𝑎 = 𝐿𝑎𝑐 = −0.5𝐿𝑚𝑟 

𝐿𝐴𝑎 = 𝐿𝐵𝑏 = 𝐿𝐶𝑐 = 𝐿𝑚𝑠𝑟 cos 𝜃𝑟 

𝐿𝐴𝑐 = 𝐿𝐵𝑎 = 𝐿𝐶𝑏 = 𝐿𝑚𝑠𝑟 cos(𝜃𝑟 − 1200) 

𝐿𝐴𝑏 = 𝐿𝐵𝑐 = 𝐿𝐶𝑎 = 𝐿𝑚𝑠𝑟 cos(𝜃𝑟 + 1200) 
 

The mutual inductance between a stator winding and any rotor winding varies sinusoidally with rotor position. The 

Fig. 5 Shows the two dimensional diagram of three-phase induction motor with stator and rotor windings. 
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Fig. 5 Three Phase Induction Motor 

 

The voltage equations for a three-phase induction machine can be expressed as: 

Stator Equation is    𝑉𝐴 = 𝑅𝐴𝑖𝐴 +
𝑑𝜆𝐴

𝑑𝑡
 

𝑉𝐵 = 𝑅𝐵𝑖𝐵 +
𝑑𝜆𝐵

𝑑𝑡
 

𝑉𝐶 = 𝑅𝐶𝑖𝐶 +
𝑑𝜆𝐶

𝑑𝑡
 

Rotor equation is   𝑉𝑎 = 𝑅𝑎𝑖𝑎 +
𝑑𝜆𝑎

𝑑𝑡
 

𝑉𝑏 = 𝑅𝑏𝑖𝑏 +
𝑑𝜆𝑏

𝑑𝑡
 

𝑉𝑐 = 𝑅𝑐𝑖𝑐 +
𝑑𝜆𝑐

𝑑𝑡
 

The parameters inside the induction motor three-phase model and the three phase source can be set by executing a m-

file which stores the all parameters used in the model. By running the m-file all the values of the parameters can be 

accessed by the model from the workspace.  

Machine Parameters: The parameters of the machine used for simulation are listed below: 

Rated Voltage V = 380V, 

Frequency f= 50 Hz, 

Stator Resistance Rstator = 15.3Ω, 

Rotor Resistance Rrotor = 7.46Ω, 

The stator and rotor self-inductances are equal to 

Lstator = Lrotor = Lleakage+Lmutual = .035+.55 = 0.585H, 

The mutual inductance between any two stator and any tow rotor windings is equal to 

Lss, mutual = Lrr, mutual = -0.5Lmutual = -0.275H, 

The mutual inductance between a stator winding and any rotor winding is equal to Lsr, mutual = Lmutual =0.55H, 

Number of Poles P = 4, 

Inertial constant J = 0.023kg.m2. 

 

Sub Models and Equations Governing the Subsystem of Induction Motor 

1) Mechanical Model 

The dynamic load equation is:  𝑇𝑒 − 𝑇𝐿 = 𝐽
𝑑𝜔𝑟

𝑑𝑡
+ 𝐷𝜔𝑟 

𝑑𝜔𝑟

𝑑𝑡
=

𝑇𝑒 − 𝑇𝐿

𝐽
 

𝜔𝑟 =
1

𝐽
∫(𝑇𝑒 − 𝑇𝐿)𝑑𝑡 

2) Torque Model 
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The electromechanical torque equation is:[𝑖𝐴 {𝑖𝑎[𝐿𝐴𝑎 + 𝐿𝑎𝐴] sin(𝜃𝑟) + 𝑖𝑏[𝐿𝐴𝑏 + 𝐿𝑏𝐴] sin (𝜃𝑟 +
2𝜋

3
) + 𝑖𝑐[𝐿𝐴𝑐 +

𝐿𝑐𝐴] sin (𝜃𝑟 −
2𝜋

3
)} + 𝑖𝐵 {𝑖𝑎[𝐿𝐵𝑎 + 𝐿𝑎𝐵] sin(𝜃𝑟) + 𝑖𝑏[𝐿𝐵𝑏 + 𝐿𝑏𝐵] sin (𝜃𝑟 +

2𝜋

3
) + 𝑖𝑐[𝐿𝐵𝑐 + 𝐿𝑐𝐵] sin (𝜃𝑟 −

2𝜋

3
)} +

𝑖𝐶 {𝑖𝑎[𝐿𝐶𝑎 + 𝐿𝑎𝐶] sin(𝜃𝑟) + 𝑖𝑏[𝐿𝐶𝑏 + 𝐿𝑏𝐶] sin (𝜃𝑟 +
2𝜋

3
) + 𝑖𝑐[𝐿𝐶𝑐 + 𝐿𝑐𝐶] sin (𝜃𝑟 −

2𝜋

3
)}] 

 

3) Flux Linkages Model 

The flux linkages associated with the interactions between stator and rotor windings are represented by: 

Stator: 

𝜆𝐴 = 𝐿𝐴𝐴𝑖𝐴 + 𝐿𝐴𝐵𝑖𝐵 + 𝐿𝐴𝐶𝑖𝐶 + 𝐿𝐴𝑎 cos(𝜃𝑟) 𝑖𝑎 + 𝐿𝐴𝑏 cos (𝜃𝑟 +
2𝜋

3
) 𝑖𝑏 + 𝐿𝐴𝑐 cos (𝜃𝑟 −

2𝜋

3
) 𝑖𝑐 

𝜆𝐵 = 𝐿𝐵𝐴𝑖𝐴 + 𝐿𝐵𝐵𝑖𝐵 + 𝐿𝐵𝐶𝑖𝐶 + 𝐿𝐵𝑎 cos (𝜃𝑟 −
2𝜋

3
) 𝑖𝑎 + 𝐿𝐵𝑏 cos(𝜃𝑟) 𝑖𝑏 + 𝐿𝐵𝑐 cos (𝜃𝑟 +

2𝜋

3
) 𝑖𝑐 

𝜆𝐶 = 𝐿𝐶𝐴𝑖𝐴 + 𝐿𝐶𝐵𝑖𝐵 + 𝐿𝐶𝐶𝑖𝐶 + 𝐿𝐶𝑎 cos (𝜃𝑟 +
2𝜋

3
) 𝑖𝑎 + 𝐿𝐶𝑏 cos (𝜃𝑟 −

2𝜋

3
) 𝑖𝑏 + 𝐿𝐶𝑐 cos(𝜃𝑟) 𝑖𝑐 

Rotor: 

𝜆𝑎 = 𝐿𝐴𝑎𝑖𝑎 + 𝐿𝐴𝑏𝑖𝑏 + 𝐿𝐴𝑐𝑖𝑐 + 𝐿𝑎𝐴 cos(𝜃𝑟) 𝑖𝐴 + 𝐿𝑎𝐵 cos (𝜃𝑟 +
2𝜋

3
) 𝑖𝐵 + 𝐿𝑎𝐶 cos (𝜃𝑟 −

2𝜋

3
) 𝑖𝐶 

𝜆𝑏 = 𝐿𝑏𝑎𝑖𝑎 + 𝐿𝑏𝑏𝑖𝑏 + 𝐿𝑏𝑐𝑖𝑐 + 𝐿𝑏𝐴 cos (𝜃𝑟 +
2𝜋

3
) 𝑖𝐴 + 𝐿𝑎𝐵 cos(𝜃𝑟) 𝑖𝐵 + 𝐿𝑎𝐶 cos (𝜃𝑟 −

2𝜋

3
) 𝑖𝐶  

𝜆𝑐 = 𝐿𝑐𝑎𝑖𝑎 + 𝐿𝑐𝑏𝑖𝑏 + 𝐿𝑐𝑐𝑖𝑐 + 𝐿𝑏𝐴 cos (𝜃𝑟 −
2𝜋

3
) 𝑖𝐴 + 𝐿𝑐𝐵 cos (𝜃𝑟 +

2𝜋

3
) 𝑖𝐵 + 𝐿𝑏𝐶 cos(𝜃𝑟) 𝑖𝐶  

 

Symmetrical Component Analysis 

The occurrence of shorted turns and phase imbalanced in the stator winding of induction motors cause predictable 

harmonics to appear in the spectrum of line currents and in the axial leakage flux. By analyzing the relation of the 

positive and negative-sequence currents to that of torque and slip, when the machine is subjected to various operating 

conditions, the faults can be diagnosed. 

An unbalanced system of related phasors can be resolved into n systems of balanced phasors called the symmetrical 

components of the original phasors. The per phase impedance of the positive-sequence network will be different from 

those of negative and zero-sequence networks. The expression for the three unbalanced phasors as a function of the 

balanced phasor components are as given below: 

𝑉𝐴 = 𝑉𝐴0 + 𝑉𝐴1 + 𝑉𝐴2 

𝑉𝐵 = 𝑉𝐵0 + 𝑉𝐵1 + 𝑉𝐵2 

𝑉𝐶 = 𝑉𝐶0 + 𝑉𝐶1 + 𝑉𝐶2 

The positive, negative and zero sequence vector components of any phase always have the angular relationship with 

respect to one another. 

𝑉𝐴0 = (𝑉𝐴 + 𝑉𝐵 + 𝑉𝑐) 3⁄  

𝑉𝐴1 = (𝑉𝐴 + 𝑎𝑉𝐵 + 𝑎2𝑉𝑐) 3⁄  

𝑉𝐴2 = (𝑉𝐴 + 𝑎2𝑉𝐵 + 𝑎𝑉𝑐) 3⁄  

(
𝑉𝐴0

𝑉𝐴1

𝑉𝐴2

) =
1

3
(

1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
) (

𝑉𝑎

𝑉𝑏

𝑉𝑐

) 

𝑎 = 𝑒𝑥𝑝 (2𝜋
3⁄ ) 

If suppose C phase is lost and the motor is running at a steady speed. Then Va and Vb are the remaining voltages and 

they produce equal and opposite line currents Ia and Ib, which increase to around 1.73 to 2.00 times that of the normal. 

The negative-sequence voltages produce currents which are limited by impedance that closely approximate those that 

apply when the motor is started. This negative-sequence current results in the production of counter torque. To 

compensate negative torque produced the positive-sequence current increases. The motor slip increases to allow the 

additional positive torque to develop. 

 

FAULT DIAGNOSIS OF ELECTRICAL DRIVES USING ANFIS 
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This section introduces a brief idea about the architecture and learning procedure of the ANFIS which uses a feed-

forward multilayer perceptron neural network (MLP) with supervised learning capability. An ANFIS, as its name 

implies, is a network structure consisting of nodes and directional links through which the nodes are connected. 

Moreover, part or all of the nodes are adaptive, which means their outputs of the ANFIS structure depend on the 

weights connected to the nodes, and the learning rule (gradient descent) specifies how these parameters should be 

changed to minimize a prescribed error measure. 

 

ANFIS Architecture 

For simplicity, we assume the fuzzy inference system under consideration has two inputs x and y and one output z. 

suppose that the rule base contains two fuzzy if then rules of Takagi and Sugeno’s type. 

Rule 1: if x is A1 and y is B1, then f1 = p1x + q1y + r1, 

Rule 2: if x is A2 and y is B2, then f2 = p2x + q2y + r2. 

 
Fig.6 Type-3 fuzzy reasoning 

 

Then the type-3 fuzzy reasoning is illustrated in Fig.6, and the corresponding equivalent ANFIS architecture is shown 

in Fig.7. The node functions in the same layer are of the same function family as described below: 

 
Fig.7 Equivalent ANFIS architecture 

 

Layer 1: Every node I in this layer is a square node with a node function 𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥) 

Where 

x = input to node i 

Ai= linguistic label (small, large, etc) associated with this node function. 
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1 =i O Membership function of Ai and it specifies the degree to which the given x satisfies the quantifier Ai. A bell-

shaped membership function 𝜇𝐴𝑖(𝑥) with maximum equal to 1 and minimum equal to 0 is chosen for the ANFIS 

architecture 

𝜇𝐴𝑖(𝑥) =
1

1 + [(
𝑥−𝑐𝑖

𝑎𝑖
)

2

] 𝑏𝑖

 

Or 

𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 {− (
𝑥 − 𝑐𝑖

𝑎𝑖
)

2

} 

Where {ai, bi, ci} is the parameter set. As the values of these parameters change, the bell shaped functions vary 

accordingly, thus exhibiting various forms of membership functions on linguistic label Ai. In fact, any continuous and 

piecewise differentiable functions, such as commonly used Gaussian, trapezoidal or triangular shaped membership 

functions are also qualified candidates for node functions in this layer. 

Layer 2: Every node in this layer is a circle node labeled Π which implies the incoming signals and sends the product 

out. For instance, 

𝑊𝑖 = 𝜇𝐴𝑖(𝑥)𝑋𝜇𝐵𝑖(𝑥) 

Where i = 1, 2. 

 

Each node output presents the firing strength of a rule (in fact, other T-norms operators that perform generalized and 

can be used as the node function in this layer). 

 

Layer 3: Every node in this layer is a circle node labeled N. the ith node calculates the ratio of the ith rules firing strength 

to the sum of all rules firing strengths: 

𝑊𝑖 =
𝑊𝑖

𝑊1 + 𝑊2
 

Where i = 1, 2. 

For convenience, outputs of this layer will be called normalized firing strengths. 

Layer 4: Every node I in this layer is a square node with a node function 

𝑂𝑖
4 = 𝑊𝑖𝑓𝑖 = 𝑊𝑖(𝑃𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) 

Where 

𝑊𝑖 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟 3  
And          {𝑝𝑖 , 𝑞𝑖, 𝑟𝑖} = 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡 

Layer 5: The single node in this layer is a circle node labeled Σ that computes the overall output as the summation of 

all incoming signals i.e. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑂1
5 = ∑ 𝑊𝑖𝑓𝑖

𝑖

 

 

Fuzzy Inference Systems with Simplified Fuzzy if-then Rules 

Though the reasoning mechanisms as shown in Fig.8 are commonly used each of them have inherent draw backs. For 

Type-1 reasoning, the membership functions on the consequence part are restricted to monotonic functions which are 

not compatible with linguistic terms such as “medium” whose member ship function should be bell-shaped. To cope 

with these disadvantages, simplified fuzzy if-then rules of the following form are introduced. 

If x is big and y is small, then z is d. 

 

Most of all, with this simplified fuzzy if-then rule, it is possible to prove that under certain circumstances, the resulting 

fuzzy inference system has unlimited approximation power to match any nonlinear functions arbitrarily well on a 

compact set. We will proceed this in a descriptive way by applying the stone-weierstrass theorem. Suppose we have 

two fuzzy inference systems s and š: each has two rules and the output of each system can be expressed as 

𝑆: 𝑍 =
𝑊1𝑓1 + 𝑊2𝑓2

𝑊1 + 𝑊2
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�̃�: �̃� =
�̃�1𝑓1 + �̃�2𝑓2

�̃�1 + �̃�2

 

Where𝑓1, 𝑓2, 𝑓1, 𝑓2 are constant output of each rule. Then 𝑎𝑧 + 𝑏�̃� 𝑎𝑛𝑑 𝑧�̃� can be calculated as follows, 

𝑎𝑧 + 𝑏�̃� = 𝑎
𝑊1𝑓1 + 𝑊2𝑓2

𝑊1 + 𝑊2
+ 𝑏

�̃�1𝑓1 + �̃�2𝑓2

�̃�1 + �̃�2

 

=
𝑊1�̃�1(𝑎𝑓1 + 𝑏𝑓1) + 𝑊1�̃�2(𝑎𝑓1 + 𝑏𝑓2)

𝑊1�̃�1 + 𝑊1�̃�2 + 𝑊2�̃�1 + 𝑊2�̃�2

+
𝑊2�̃�1(𝑎𝑓2 + 𝑏𝑓1) + 𝑊2�̃�2(𝑎𝑓2 + 𝑏𝑓2)

𝑊1�̃�1 + 𝑊1�̃�2 + 𝑊2�̃�1 + 𝑊2�̃�2

 

𝑧�̃� =
𝑊1�̃�1𝑓1𝑓1 + 𝑊1�̃�2𝑓1𝑓2 + 𝑊2�̃�1𝑓2𝑓1 + 𝑊2�̃�2𝑓2𝑓2

𝑊1�̃�1 + 𝑊1�̃�2 + 𝑊2�̃�1 + 𝑊2�̃�2

 

 

Apparently the ANFIS architectures that compute 𝑎𝑧 + 𝑏�̃� 𝑎𝑛𝑑 𝑧�̃� are of the same class of 𝑠 𝑎𝑛𝑑 �̃� if and only if the 

class of membership functions are invariant under multiplication. This is loosely true if the class of membership 

functions is the set of all bell-shaped functions, since the multiplication of two bell-shaped functions is almost always 

still bell-shaped. Another more highly defined class of membership functions satisfying these criteria, as pointed out 

by Wang, is the scaled Gaussian membership function: 

𝜇𝐴𝑖(𝑥) = 𝑎𝑖 𝑒𝑥𝑝 {− (
𝑥 − 𝑐𝑖

𝑎𝑖
)

2

} 

 

Therefore by choosing an appropriate class of membership functions, we can conclude that the ANFIS with simplified 

fuzzy if-then rules satisfy the criteria of the stone Weierstrass theorem. Consequently for any given ε > 0, and any real 

valued function g, there is a fuzzy inference system such that |𝑔(𝑥) − 𝑠(𝑥)| < 𝜀 for all 𝑥 in the underlying compact 

set. Moreover, since the simplified ANFIS is a proper subset of all three types of ANFIS in Fig.8, we can draw the 

conclusion that all the three types of ANFIS have unlimited approximation power to match any given data set. 

 

 
Fig.8 commonly used fuzzy if-then rules and fuzzy reasoning mechanism 
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Proposed ANFIS Approach for Induction Motor Fault Detection 

The proposed work consists of detection and location of an inter-turn short circuit fault in the stator windings of a 

three phase induction motor by using the combination of the positive features of neural networks and fuzzy logic. 

 
Fig.9 Block diagram of the fault location procedure 

 

Fig.9 shows the block diagram of the procedure to detect and locate inter-turn fault in the stator winding of an induction 

motor. The first step of in this procedure is the acquisition of the three line currents and phase voltages from the 

induction motor in order to extract the three phase shift between the line currents and the phase voltages. The three 

phase shifts are fed to the ANFIS network. ANFIS has to learn the relationships between the fault signature i.e the 

three phase shifts between the line currents and phase voltages under different load conditions (ANFIS inputs) and the 

corresponding operating condition (ANFIS outputs) to be able to locate correctly the faulty phase. 

Fig.9 shows the ANFIS has three inputs namely, the three phase shifts and three outputs corresponding to the three 

phases of the induction motor, where the fault can occur. If a short circuit is detected and located in one of the three 

phases, the corresponding ANFIS is set to ‘one’, otherwise it is ‘zero’. 

 

Selection of a Suitable ANFIS Structure 

The neural-fuzzy architecture takes into account both ANN and fuzzy logic technologies. The system is a neural 

network structured upon fuzzy logic principles, which enables the neural fuzzy system to provide qualitative 

descriptions about the motor condition and fault detection process. This knowledge is provided by the fuzzy 

parameters of membership functions and fuzzy rules. The fault detector based on ANFIS, which is a fuzzy inference 

system implemented on five layers feed-forward network. 
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Fig.10 ANFIS fault detector 

 

The ANFIS architecture enables a change in rule structure during the evaluation of fuzzy inference system. The ANFIS 

optimized itself in given the number of iterations by providing a change in rules, by discarding unnecessary rules, and 

by changing shapes of membership functions, this is called modifications. It is an inherent characteristic of ANFIS 

architecture. The use of least square estimation is due to the fact that the network output is linear function of the 

consequence parameters. Once the system is trained for specific data over a wide range, it can be applicable to similar 

types of motor use in plants, and thus there is no need to train the model for each and every motor. 

 

Testing Results for ANFIS 

The performance of ANFIS on the testing data set represents its generalization ability. The data set is divided into 

two. One set is used for training and the other for testing. In fact a generalized neural network will perform well for 

both training and testing data. The test procedure is conducted by a test data set that is different from the training data 

set to assess the generalization capacity of the adopted network. 

 

The test data set are presented to the neural networks under three load torques (τ1 = 3 N-m, τ2 = 5 N-m, τ3 = 7 N-m) 

and represent the following different operating cases of the induction motor: healthy (three points) and fault of an even 

number of shorted turns (2, 4, 6, 8, 10, and 12) on each stator phase [18 (6 × 3) points]. Thus, a total of 21(18 + 3) 

testing samples has been collected testing the each phase stator inter-turn fault. 

 
 

Fig.12 Test Error of phase A for fault on phase A 

 

Fig.11 Test Output of phase A for fault on phase A 
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Figs.11 and 12 show the ANFIS test output and error of phase A when an inter-turn fault occurs on phase A inside the 

stator of an induction motor. From Fig.11 the ANFIS test output is equal to zero for first three samples and is equal to 

one for the faulty condition from 4 to 21 samples with good accuracy. This shows that the ANFIS is able to locate 

correctly the fault occurring on phase A. The testing error is 1.5045 × 10-7 as shown in Fig.12. 

 

The ANFIS test output and error of phase B when an inter-turn short circuit fault occurs on phase A inside the stator 

of an induction motor as shown in Figs.13 and 14. From Fig.13 it is clear that the ANFIS well learn the test data with 

good accuracy. Hence the ANFIS is able to locate correctly the stator inter-turn short circuit fault occurring on A 

phase. The testing error is very low i.e 9.5000 × 10-8 as shown in Fig.14. 

 
 

 

 

  

Figs.14 and 15 shows the ANFIS test output and test error of phase C when an inter-turn short circuit fault occurs on 

phase A inside the stator of an induction motor. Fig.14 shows that the ANFIS well learn the test data and gives the 

test output with good accuracy. The testing error is 4.0909 × 10-8 as shown in Fig.15. Hence we conclude that the 

ANFIS is able to locate correctly the fault occurring on phase A. 

 
 

 

 

Identification of motor parameters and application AI techniques for fault detection 

The non-linear relation between the five input measurable parameters of the induction motor (𝐼, 𝜔, 𝜏𝑤 , 𝜏𝑏, 𝑑𝑏) with 

the motor insulation condition (Nc) and bearing condition (Bc) is explained in literatures. From previous analysis, the 

motor intake current (I), rotor speed (ω), winding temperature 𝜏𝑤, bearing temperature 𝜏𝑏 and noise of the motor (db) 

were found to be very sensitive to the changing conditions of the stator winding and bearings. it was shown that there 

exists a mapping m between (𝐼, 𝜔, 𝜏𝑤 , 𝜏𝑏 , 𝑑𝑏) to (Nc , Bc) such that; 

Fig.14 Test Error of phase B for fault on phase A Fig.13 Test Output of phase B for fault on phase A 

Fig.15 Test Error of phase C for fault on phase 

A 

 

Fig.14 Test Output of phase C for fault on phase A 
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𝑚 = (𝐼, 𝜔, 𝜏𝑤 , 𝜏𝑏, 𝑑𝑏) → (𝑁𝑐 , 𝐵𝑐)  
 

Where m is complex it has a high degree of non-linearity. Because of the non-linearity, an accurate result is rather 

difficult. However, this complexity can be avoided using different kinds of AI techniques. Basic definitions relating 

to ANN, FIS and ANFIS are given in literature. The FISs are based on a set of rules. These rules allow the input to be 

fuzzy, i.e. more like the natural way that humans express knowledge. A reasoning procedure, the compositional rule 

of inference, enables conclusions to be drawn by extrapolation or interpolation from qualitative information stored in 

the knowledge base. ANN can capture domain knowledge from examples. It can readily handle both continuous and 

discrete data and has a good generalization capability as with FISs. An ANN is a computational model of the brain. 

ANNs assume that computation is distributed over several simple units called neurons, which are interconnected and 

operate in parallel thus known as parallel distributed processing systems. The error between the actual and expected 

output is used to strengthen the weights of the connection between neurons. The neural fuzzy architecture takes into 

account both the ANN and FIS. It incorporates positive features of ANN and FIS.  

 

The ANFIS is a neural network structured upon fuzzy logic principles, which enable the neural fuzzy system to provide 

the motor condition and fault detection process. The AI based inter turn insulation and bearing wear fault detectors 

are developed in real time. The experimental stator currents waveforms and their respective Fast Fourier Transforms 

(FFTs) are shown in Fig.16. The minimum motor intake current recorded was 3.51 Amps and the maximum current 

under fault condition when the motor was heavily loaded was 10.72 amps. The speed drops from 1480 rpm to 894 

rpm corresponding to results when a no-load healthy machine is changed to heavily loaded faulty machine. The few 

samples of noise waveforms and corresponding FFTs obtained from the DSO are shown in Fig.17. It is observed from 

Fig.16 and 17 that the FFTs of the current and noise waveforms increase with the severity of faults. The harmonics 

contents get introduced and continuously rise with the type of faults. The losses in the motor continuously rise as the 

intensity of faults increases and it reduces motor efficiency.  The one hundred and eight patterns are used for training 

the systems and the thirty-six patterns are used for testing the systems. 

 
a.                                                                    b. 

Scale: 100 volts/ div, 4 Amps. /div, 10 ms/ div, 100Hz/ div 

 

Fig.16 Motor intake current and their respective FFTs 

(a) Rated load, healthy bearing, two turns shorted, 

(b) Rated load, damaged bearing, all turns shorted 
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Fig.17 Experimental Results in pu. at rated load 

 

Comparative results and their analysis 

The three AI systems based upon FIS, ANN and ANFIS are applied to detect the inter-turn insulation and bearing 

wear faults in a single-phase induction motor. The results obtained and their analyses are as follows: 

 

A: Fault Detection Fuzzy Inference System (FIS) 

The main advantage of this approach is that it is easy to implement "rule of thumb", experiences and heuristics. The 

expert knowledge and the experimental data are used to form the fuzzy rules. Later the 

 

 
 

 

Fig.18 consistency of these rules is verified using experimental results. 

 

1. Healthy,  2. Less lubricated,  

3. Dry and 4. Damage bearings 

(b) Bearing Fault 

 

0: Healthy condition – No turns shorted  

8: Fault condition – All turns shorted 

(a) Insulation Fault 

 

(b) input and output membership functions; Five inputs (a) FIS Systems 

(d) input and output membership functions  

 

(c) FIS System, Two inputs 
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Fuzzy systems provide qualitative description about the motor condition and performance. This knowledge is provided 

by fuzzy parameters of membership functions and fuzzy rules. The fuzzy systems are developed for two input 

parameters (𝐼, 𝜔) and in later steps the remaining three parameters (𝜏𝑤 , 𝜏𝑏, 𝑑𝑏) are added sequentially. The 

performance is tested by varying the types of membership functions and their percentage of overlapping. The universe 

of discourse represents the operating range of the inputs. 

 

Fig.18 shows the two different types of Fuzzy Inference Systems (FISs) and their corresponding optimized 

membership functions. The accuracy of the fault detection is improved sequentially by adding the new input parameter 

in the earlier system. It is observed that the response time is considerably increased with the addition of input 

parameters. The performance, as shown in Table 1, is quite good. In fact, it indicates that the fuzzy system is capable 

to provide good detection. 

 

Table 1 Fuzzy Inference System results 

S.No. No. of Input % Accuracy Nc % Accuracy Bc 

1. Two 93.24 77.32 

2. Three 94.65 87.34 

3. Four 97.23 95.32 

4. Five 99.24 97.56 

 

B: Fault Detection by ANN system 

The neural network is appropriately trained so that the network weights will contain the non-linearity of the desired 

mapping. Therefore, the difficulties of mathematical modeling can be avoided. In order to use ANN for identifying 

induction motor faults and no fault condition, it is necessary to select proper inputs and outputs of the network, 

structure of the network, and train it with appropriate data. The neurons detecting the winding insulation fault can be 

separated from the neurons detecting the bearing wear. This is because, all the hidden neurons are not fully connected 

to the output neurons, which decode the condition of Nc and Bc from the information obtained from the hidden 

neurons. The sigmoid function is used as the nonlinear activation function for all neurons (except the ones in the input 

layer), and the network is trained. 

 
Fig.19 ANN structure        Fig.20 Error reducing with epochs for two to five input system 

 

ANN based faults detection systems were developed as shown in Fig.19. The inputs to these systems vary from two 

to five, while the outputs are two in number and they predict the stator winding and motor bearing conditions 

respectively. The ANN is a multi-input and multi-output system consisting of 10 hidden neurons. 

 

The four systems were trained and optimized with the two, three, four and five inputs and two outputs respectively. 

The data patterns applied for training and testing purposes were (108 x 2, 36 x 2), (108 x 3, 36 x 3) (108 x 4, 36 x 4) 

and (108 x 5, 36 x 5) respectively. 
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The training error against iterations graph is given in Fig.20. It is observed that the epochs (iterations) required for 

training the system reduces as the number of input increases. 

 

Table 2 indicates the comparison among all these four systems. All the four systems are optimized by varying the 

number of neurons in the hidden layer, the learning factor and the momentum. It is found that the accuracy improved 

with the addition of every input parameter for winding insulation condition (Nc) and bearing wear (Bc). It was 

observed that the system having the five input parameters produced the highest accuracy. 

 

Table 2 Artificial Neural Network System results 

S.No. No. of Input % Accuracy Nc % Accuracy Bc 

1. Two 89.24 83.32 

2. Three 92.65 88.34 

3. Four 96.23 93.32 

4. Five 99.64 98.56 

 

C: Fault Detection by Adaptive Neural Fuzzy Inference System (ANFIS) 

The neural-fuzzy architecture takes into account both neural network and fuzzy logic technologies. The ANFIS tool 

box in MATLAB environment is used for the fault detection purpose. 

 

The limitation of this tool box is that the output parameter should be limited to one despite the input parameters. 

Therefore, two independent ANFIS fault detectors were developed. They were: (i) ANFIS insulation condition 

detector and (ii) ANFIS bearing condition detector. Each detector was trained and tested individually. Initially, both 

the detectors were developed with two input parameters speed and current. Afterwards, the remaining three parameters 

(winding temperature, bearing temperature and noise of the motor) were included sequentially and the results were 

compared. 

 
 

 
Fig.21 Three inputs (a) ANFIS Systems for insulation condition, (b) Testing performance for insulation 

condition (c) ANFIS Systems for bearing condition, (d) Testing performance for bearing condition 
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The three inputs ANFIS fault detectors are shown in Fig.21 along with their corresponding testing performances. The 

performance results were tabulated as shown in Table 3. It was observed from the table that the percentage accuracy 

also increased with the addition of input parameters. 

 

Table 3 Adaptive Neural Fuzzy Inference System results 

S.No. No. of Input % Accuracy Nc % Accuracy Bc 

1. Two 94.04 90.32 

2. Three 96.04 91.34 

3. Four 96.43 95.35 

4. Five 96.67 98.56 

 

CONCLUSION 
Three AI techniques were applied and five input parameters were used sequentially to develop fault detection systems 

for the detection of inter-turn short circuits and bearing wear faults. The results of this paper are as follows. 

1. The percentage accuracy of incipient faults detection with respect to winding insulation condition and 

bearing condition was improved with the additional input parameters in all the above fault detection systems. 

2. The Fuzzy Inference System (FIS) provides accuracy of more than 97%. However, the response time is 

poor to predict the conditions. 

3. The five inputs ANN based detector provides the highest accuracy in the prediction of winding condition. 

Also the response time (iterations) reduces with the addition of input parameters. 

4. An ANFIS based detector provides the highest accuracy in prediction of bearing condition. However, 

ANFIS has its unique advantages and these are applicable for fault detection. 

5. In comparing Tables 1 to 3, the best system for the prediction of insulation and bearing condition is a five 

inputs ANN based system as the percentage accuracy after testing is more than 98% for the prediction of insulation 

condition as well as bearing condition. 

6. All these techniques were applied to the actual faulty motor of the same capacity (0.5 hp, 220v). The 

performance obtained is quite good with accuracy of more than 96%. The fault detection results were found to be 

satisfactory. 

7. Once the system is trained for specific data over a wide range it can be applicable to similar types of motors 

used in plants and thus there is no need to train the model for each and every motor. 

 

A method of using fuzzy logic to interpret current sensors signal of induction motor for its stator condition monitoring 

was presented. Correctly processing theses current signals and inputting them to a fuzzy decision system achieved 

high diagnosis accuracy. There is most likely still room for improvement by using an intelligent means of optimization. 

Fault Detection Scheme using Neuro-Fuzzy Approach ANFIS had gained popularity over other techniques due to its 

knowledge extraction feasibility, domain partitioning, rule structuring and modifications. The artificial neural network 

(ANN) has the capability of solving the motor monitoring and fault detection problem using an inexpensive, reliable 

procedure. However, it does not provide heuristic reasoning about the fault detection process. On the other hand, fuzzy 

logic can easily provide heuristic reasoning, while being difficult to provide exact solutions. By merging the positive 

features of ANN and fuzzy logic, a simple noninvasive fault detection technique is developed. By using a hybrid, 

supervised learning algorithm, ANFIS can construct an input-output mapping. The supervised learning (gradient 

descent) algorithm is used here to train the weights to minimize the errors. 

 

In this chapter, application of ANFIS architecture takes into account the positive features of both the ANN and fuzzy 

logic technology for detection of stator winding inter-turn fault of an induction motor has been proposed. This system 

is a neural network structured upon fuzzy logic principles, which enables the neural fuzzy system to provide qualitative 

descriptions about the motor condition and fault detection process. Here we have used the three phase shifts between 

the line currents and phase voltages of the induction motor as inputs to the ANFIS. 
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A diagnosis method using fuzzy logic to determine the state condition of the induction motor was presented. In order 

to make an efficient diagnosis at low slip, the stator current envelope obtained via Hilbert transform has been used as 

diagnostic signal. The amplitude of the dc and 2sf components of the spectrum stator current envelope are intended 

as inputs to the fuzzy system which are converted to variables linguistic by fuzzy subsets and their corresponding 

membership functions. The output of this system represents the rotor condition. The system was tested under different 

load and for different number of broken bars. The results obtained with this system are good and is capable to detect 

the correct number of broken bar. 
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